

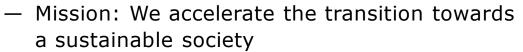
Criticality classification – Data sources and requirements

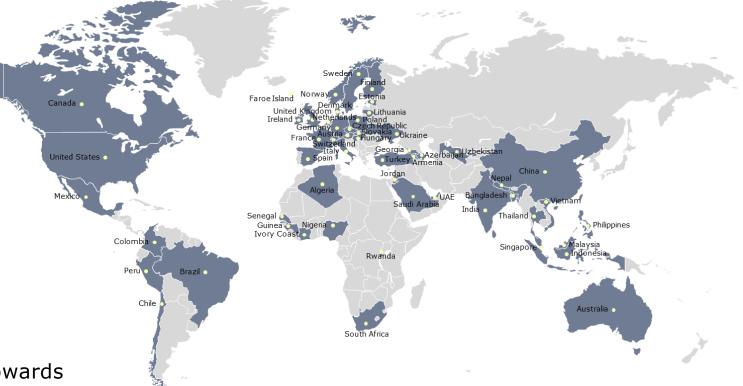
THTH SPRING WEBINAR 2024

JUSSI-PEKKA PENTTINEN

Jussi-Pekka Penttinen

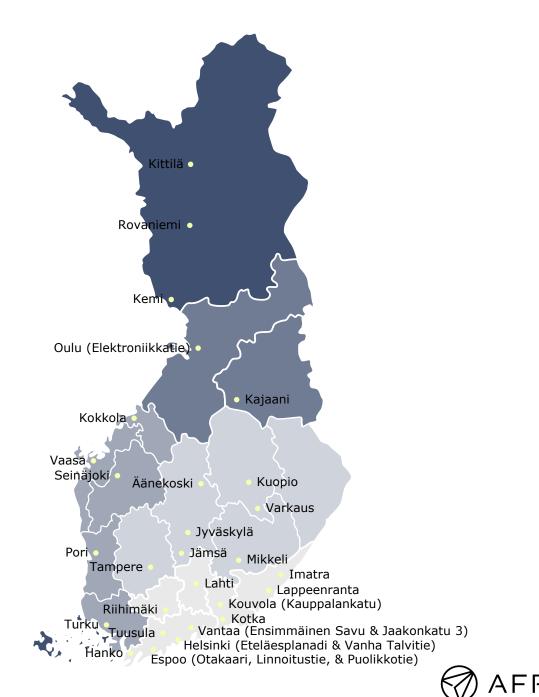
- Tampere University of Technology: M.Sc. (2005)
 - Thesis: Analysis of failure logic using simulation
- Ramentor Oy: Chief Architect (2004-2020)
 - Development of ELMAS tool
 - Research of reliability and risk analysis methods
- Tampere University: D.Sc. (2020)
 - Dissertation: <u>An Object-Oriented Modelling Framework</u> <u>for Probabilistic Risk and Performance Assessment of</u> <u>Complex Systems</u>
- AFRY: Senior Adviser (2020-)
 - Reliability analysis and risk assessment: Research, development and application to various targets
 - AFRY Reliability Tools
- Comments and questions:
 - jussi-pekka.penttinen@afry.com, 040-8222629


Engineered by AFRY


- AFRY provides engineering, design, digital and advisory services to accelerate the transition towards a sustainable society.
- Five divisions:
 - Infrastructure
 - Industrial & Digital Solutions
 - Process Industries
 - Energy
 - Management Consulting
- Three main sectors: Infrastructure, Industry and Energy
- ÅF and Pöyry became AFRY
 - In February 2019 ÅF and Pöyry joined forces.
 - In November 2019 ÅF Pöyry launched a new common brand, AFRY.

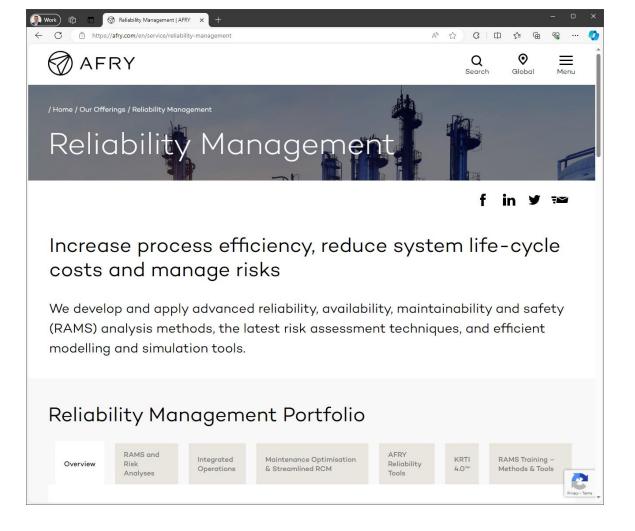
AFRY around the world

- Nordic roots with a global reach
 - 19 000 employees
 - Projects across > 100 countries
 - Across > 40 countries with AFRY offices
- Net sales of about 2.4 billion euros
 - 75% of sales in the Nordic Market
 - 75% of project sales
 - 75% of sales to private sector
 - Listed on Nasdaq Stockholm



AFRY in Finland

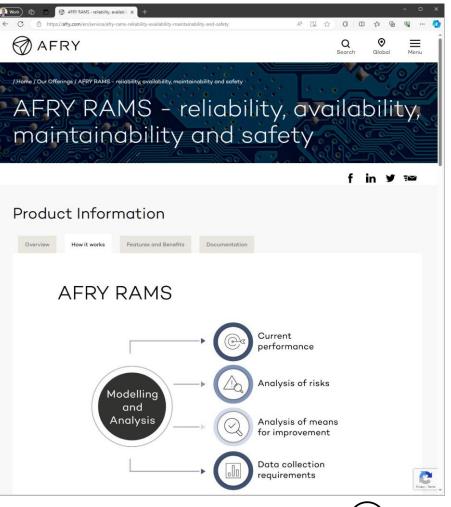
- About 3 000 employees in Finland
- Offices in around 30 locations across Finland, from Hanko to Kittilä


Finland

Finnish Lapland	3
Oulu	2
West Coast	5
Finnish Lakeland	7
Southern Finland	10

AFRY Reliability Management

- AFRY Reliability Management: Provides advanced RAMS analysis and risk assessment services using efficient tools
 - AFRY Reliability Management section
 - RAMS analysis services
- Expertise: Eight experts each with 10-20 years of experience across various industry sectors
- Experience: Over 200 successfully completed projects related to reliability and risk assessment since 2010
- AFRY Reliability Tools portal: Provides analysis tools and instruction documents
 - Web page: <u>http://reliability.afry.com</u>
 - Contact: <u>reliability@afry.com</u>


AFRY Reliability Management – Key services

Model-based RAMS analyses (AFRY ELMAS tool)

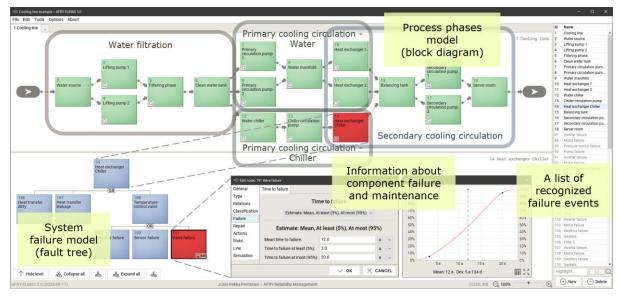
- Optimise Reliability, Availability, Maintainability and Supportability/Safety (RAMS) factors
- Predict overall costs and forecast resource requirements
- O&M data analyses (AFRY Audit tool)
 - Translate data into valuable insights for resource prioritization and investment planning
- Criticality classification (AFRY Criti tool)
 - Improve operational availability and prioritise maintenance actions

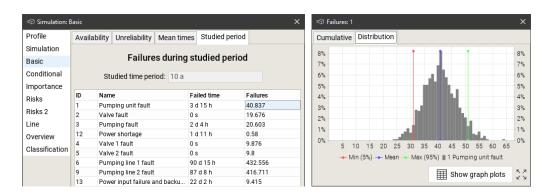
Various other services and tools, for example:

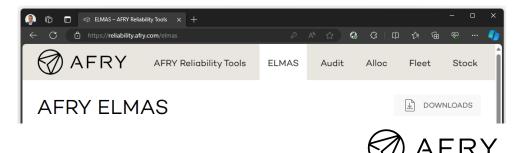
- RAMS requirements allocation (AFRY Alloc tool)
- Fleet availability analysis (AFRY Fleet tool)
- Spare part optimization (AFRY Stock tool)

Model-based RAMS analysis

Why?


- Risk assessment: Understand overall consequences of potential failures and identify optimal corrective actions.
- Early-stage verification: Ensure that the project meets the RAMS benchmarks, enhancing CAPEX/OPEX accuracy.
- Investment planning: Identify the most critical components and the most beneficial investments.


How?


- AFRY ELMAS tool: Comprehensive simulation tool for advanced Fault Tree Analysis (FTA), Reliability Block Diagram (RBD), etc.
- Systematic analysis: Modelling of failure behavior, causeconsequence logic, maintenance actions, cost risks, etc.

Results:

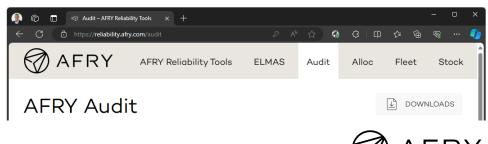
- **1) Maintenance planning:** Identify efficient improvements to condition monitoring, maintenance actions, etc.
- **2) Optimization:** Improve Reliability, Availability, Maintainability and Supportability/Safety (RAMS) factors with low costs.
- 3) Scenario analysis: Evaluate design solutions and investments.

O&M data analysis

Why?

- Informed decisions: Systematic analysis ensures comprehensive situational awareness and identifies potential improvement targets.
- Capitalisation of data: Collected data serves as valuable capital that can be refined into useful insights and enhanced operation.
- Fast results: A data-based approach efficiently provides a wide range of valuable results while minimising client workload.

How?


- AFRY Audit tool: AFRY has developed an efficient tool for generating illustrative analysis perspectives from O&M data.
- Systematic analysis: Device hierarchy, event history, costs and all other available data are analysed to reveal critical equipment, trend changes, correlations, hidden costs, and other valuable insights.

Results:

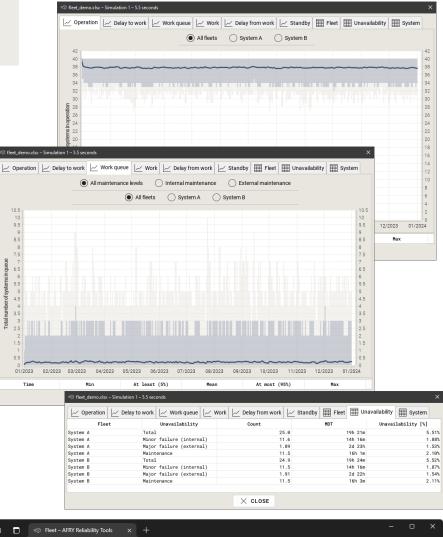
- 1) History audit: The history data is refined into a clear and structured view of operational reliability, availability and costs.
- 2) Improvement targets: The analysis identifies key areas for enhancements and quantifies the improvement potential.
- **3) Continuous improvement:** The analysis can be regularly repeated with updated data to facilitate a streamlined follow-up process.

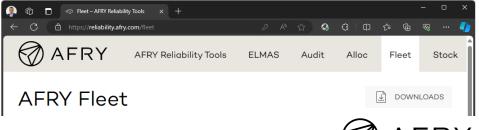
The fleets consist of multiple systems. The systems can refer to vehicles or any other items that encounter failures and require actions offered by maintenance organizations.

AFRY RELIABILITY MANAGEMENT

Fleet availability analysis

Why?


- Informed decisions: Systematic analysis ensures the right situation awareness and identifies the most potential improvement targets.
- Ensure adequate resources: To guarantee successful fleet maintenance, it is crucial to have an appropriate number of maintenance personnel, workshops and other essential resources.
- Compare scenarios: Assess the capability of the maintenance organization to handle the workload in different operational scenarios.


How?

- AFRY Fleet Tool: AFRY has developed a customisable tool for modelling and simulation-based analysis of fleet O&M.
- Comprehensive model: System failures, maintenance resources and levels, standby systems, logistics delays, spare parts, queuing priorities, special skills/tools and other details can be included.

Results:

- 1) Availability metrics: Enables calculating the probabilities for unavailability in different operational scenarios and life-cycle phases.
- 2) Workload metrics: Provides estimates for maintenance wait times and occupancy rates of personnel, workshops or other resources.
- **3) Bottlenecks:** Identifies the main causes for potential fleet unavailability and evaluates the possibilities to prevent them.

Criticality Classification

- Criticality classification is a method for recognizing and defining equipment criticalities in process industry systems.
- The method evaluates equipment based on several criteria and calculates a criticality index using the selections:
 - Time between failures, Production loss, Quality cost, Repair or consequential cost, Safety risks, Environmental risks
 - A weight factor is assigned for each criteria
- Similar method with different criteria can be applied to assess spare part criticalities.

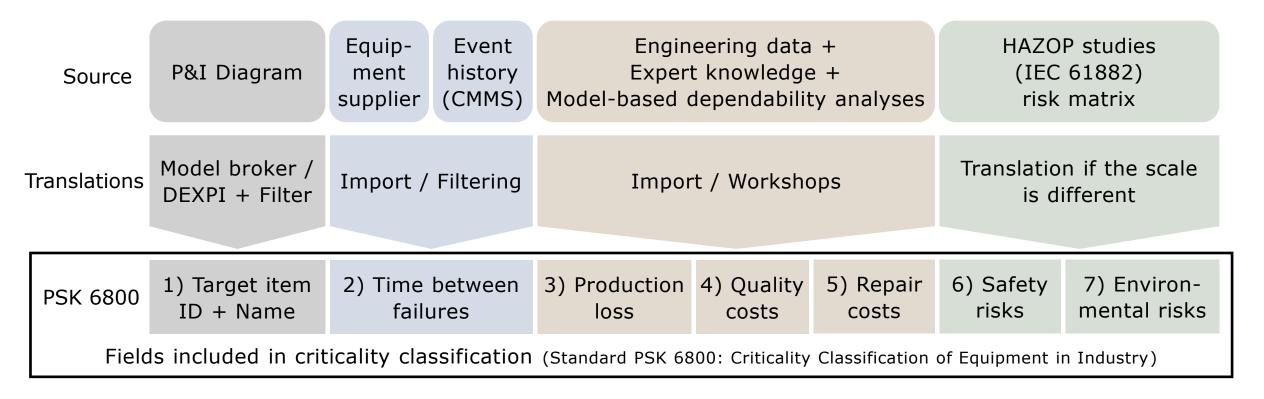
- The standard PSK 6800 Criticality
 Classification of Equipment in Industry
 was published in 2008.
- The standard was created by a PSK standardization work group, which includes the leading experts from big Finnish industrial companies.
- While PSK 6800 serves as a good generic method, it's essential to customize the classification selections and weight factors to tailor the method for each specific environment.

Criticality Classification – Purpose

- Criticality classification can be used, for example, to the following purposes:
 - Creating a maintenance action plan
 - Guiding maintenance actions (e.g., work prioritization)
 - Assessing RAMS requirements for equipment during the design phase (e.g., identifying critical components)
 - Identifying equipment that requires more detailed analyses
- Criticality classification is especially suitable for large systems with vast number of components
 - The lightweight analysis does not go deeper than the equipment level

- The results got from criticality classification can be analyzed further with more detailed analysis methods, for example:
 - Fault Tree Analysis (FTA)
 - Failure Mode and Effects Analysis (FMEA)
- The criticality index can be used for ABC classification:
 - Class A: Typically, about 20% of equipment that cause 80% of the total costs
 - Class B: Typically, about 30% of equipment that cause 15% of the total cots
 - Class C: Typically, about 50% of equipment that cause 5% of the total costs

Criticality Classification – Data fields


- 1) Target equipment
 - Identifier and name
 - Sub-process, mechanical/automation, etc.
- 2) Time between failures [**p**]
 - Describes how often equipment failures occur
 - Four multiplier levels: $\mathbf{p} = 1$ (over 5 years), 2 (2-5 years), 4 (0.5-2 years) or 8 (0-0.5 years)
- 3) Production loss [M_p, W_p]
 - Describes duration of failure consequence from production point of view
 - Five multiplier levels: $M_p = 0, 1, 2, 3 \text{ or } 4$
 - Weight factor: $\mathbf{W}_{\mathbf{p}} = 0.100$ (describes the failure consequence for production: e.g. failure slowing process by 50% leads to multiplier 50)

- 4) Quality cost [multiplier: \mathbf{M}_{q} , fixed weight: \mathbf{W}_{q}]
 - Describes failure consequence for production quality
 - Five multiplier levels: $\mathbf{M}_{\mathbf{q}} = 0, 1, 2, 3 \text{ or } 4$
- 5) Repair or consequential cost $[M_r, W_r]$
 - Describes costs coming from failure repair
 - Five multiplier levels: $\mathbf{M}_{\mathbf{r}} = 0, 1, 2, 3 \text{ or } 4$
- 6) Safety risks [**M**_s, **W**_s]
 - Describes safety risks coming from failure
 - Five multiplier levels: $\mathbf{M}_{s} = 0, 2, 4, 8 \text{ or } 16$
- 7) Environmental risks $[\mathbf{M}_{e}, \mathbf{W}_{e}]$
 - Describes environmental risks coming from failure
 - Five multiplier levels: $\mathbf{M}_{\mathbf{e}} = 0, 2, 4, 8 \text{ or } 16$

Criticality index:
$$K = p \times (W_s \times M_s + W_e \times M_e + W_p \times M_p + W_q \times M_q + W_r \times M_r)$$

Translations for criticality classification

Target items Data source: PI diagrams

Challenges:

- Going through all possible equipment locations requires a lot of resources.
- It is challenging to understand which equipment types can be safely filtered out of classification scope without ignoring too many possibly critical equipment.

- Create an intelligent PI diagram.
 - Model broker, etc.
- Filter the equipment based on equipment type.
 - For example, leave out informative instrumentation.
- Option: Read functional location / equipment list from HAZOP study
 - In which cases the target items of HAZOP and criticality classification differ?

2a) Time between failures – Data source: Equipment supplier

Challenges:

- Not a high priority for equipment supplier to provide the needed information.
- In many cases equipment suppliers do not have any practical knowledge about equipment failure rates.

- Create and use a data interface to import failure information from equipment suppliers.
- Expert verification is required to reject unrealistic failure rate values.
- Option: If no data is available, establish baseline failure rate values for various equipment types and then collaborate with maintenance experts to fine-tune them individually.

2b) Time between failures – Data source: Event history

Challenges:

- Collected system history data can contain irrelevant failure events that can distort the true failure rate of equipment.
 - For example, repairing a bent protective cover on a pump

- Read the event history from CMMS.
- Filter events that are not failures.
- Calculate mean time between failures.
- Option: If no data is available, establish baseline failure rate values for various equipment types and then collaborate with maintenance experts to fine-tune them individually.

3) Production loss– Data sources: Expert knowledge

Challenges:

- Challenging to automatise as production loss information includes a lot of variables
 - Affecting factors include, for example, equipment capacity, redundancy, bypass possibilities and effect of buffer storages
- The dependability model could offer insights into the potential production losses resulting from failures, but such systematic detailed analyses are not commonly made.

- Currently there are no clear data import sources available.
- Manual definition as an expert estimate by operations and maintenance specialists is currently required.

4) Quality costs– Data sources: Expert knowledge

Challenges:

- Quality issues are usually very complex events with multiple affecting factors.
- Quality costs are not a designed parameter for equipment, and understanding of it requires experience about the specific process.

- Currently there are no clear data import sources available.
- Manual definition as an expert estimate by operations and maintenance specialists is currently required.

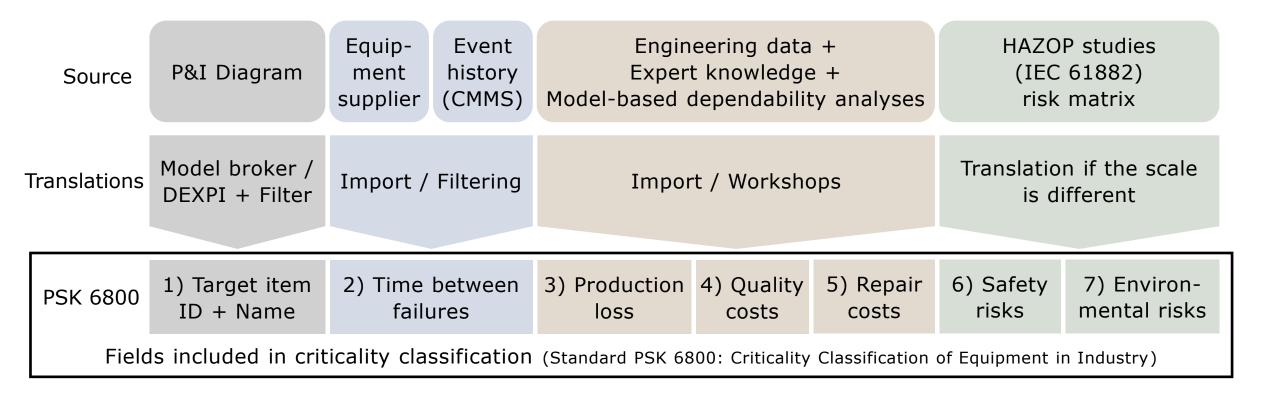
5) Repair costs – Data sources: Spare part cost list + expert

Challenges:

- Equipment can have various replaceable components with different costs.
- Some equipment failures can be repaired without any replacement needs
 - For example, pump blockage
- Some equipment failures can require replacing multiple components

- Import of an equipment spare part cost list can act as a baseline information for experts.
- Manual definition as an expert estimate by operations and maintenance specialists is currently required.
 - For example, estimate the cost of the most probable repair procedure

6) Safety and 7) Environmental risks– Data source: HAZOP


Challenges:

- HAZOP does not always distinguish safety and environmental risks in separate data fields
- HAZOP includes human errors, which are not considered in criticality classification
 - Criticality classification considers only failures that can be avoided with proper maintenance

- Use a data interface to import HAZOP tables
- Ignore the rows that consider human errors
 Interpret from text field if no separate type column
- Identify the corresponding equipment of each HAZOP row
 - Interpret from text field if no separate equipment column
- Read safety and/or environmental risk:
 - Interpret from text field if no separate column for risk type

Translations for criticality classification

Comments or Questions?

Making Future

